3.11.58 \(\int (a+b x)^6 (A+B x) (d+e x) \, dx\) [1058]

3.11.58.1 Optimal result
3.11.58.2 Mathematica [B] (verified)
3.11.58.3 Rubi [A] (verified)
3.11.58.4 Maple [B] (verified)
3.11.58.5 Fricas [B] (verification not implemented)
3.11.58.6 Sympy [B] (verification not implemented)
3.11.58.7 Maxima [B] (verification not implemented)
3.11.58.8 Giac [B] (verification not implemented)
3.11.58.9 Mupad [B] (verification not implemented)

3.11.58.1 Optimal result

Integrand size = 18, antiderivative size = 75 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=\frac {(A b-a B) (b d-a e) (a+b x)^7}{7 b^3}+\frac {(b B d+A b e-2 a B e) (a+b x)^8}{8 b^3}+\frac {B e (a+b x)^9}{9 b^3} \]

output
1/7*(A*b-B*a)*(-a*e+b*d)*(b*x+a)^7/b^3+1/8*(A*b*e-2*B*a*e+B*b*d)*(b*x+a)^8 
/b^3+1/9*B*e*(b*x+a)^9/b^3
 
3.11.58.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(231\) vs. \(2(75)=150\).

Time = 0.09 (sec) , antiderivative size = 231, normalized size of antiderivative = 3.08 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=\frac {1}{504} x \left (84 a^6 (3 A (2 d+e x)+B x (3 d+2 e x))+126 a^4 b^2 x^2 (5 A (4 d+3 e x)+3 B x (5 d+4 e x))+252 a^5 b x (B x (4 d+3 e x)+A (6 d+4 e x))+168 a^3 b^3 x^3 (3 A (5 d+4 e x)+2 B x (6 d+5 e x))+36 a^2 b^4 x^4 (7 A (6 d+5 e x)+5 B x (7 d+6 e x))+18 a b^5 x^5 (4 A (7 d+6 e x)+3 B x (8 d+7 e x))+b^6 x^6 (9 A (8 d+7 e x)+7 B x (9 d+8 e x))\right ) \]

input
Integrate[(a + b*x)^6*(A + B*x)*(d + e*x),x]
 
output
(x*(84*a^6*(3*A*(2*d + e*x) + B*x*(3*d + 2*e*x)) + 126*a^4*b^2*x^2*(5*A*(4 
*d + 3*e*x) + 3*B*x*(5*d + 4*e*x)) + 252*a^5*b*x*(B*x*(4*d + 3*e*x) + A*(6 
*d + 4*e*x)) + 168*a^3*b^3*x^3*(3*A*(5*d + 4*e*x) + 2*B*x*(6*d + 5*e*x)) + 
 36*a^2*b^4*x^4*(7*A*(6*d + 5*e*x) + 5*B*x*(7*d + 6*e*x)) + 18*a*b^5*x^5*( 
4*A*(7*d + 6*e*x) + 3*B*x*(8*d + 7*e*x)) + b^6*x^6*(9*A*(8*d + 7*e*x) + 7* 
B*x*(9*d + 8*e*x))))/504
 
3.11.58.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b x)^6 (A+B x) (d+e x) \, dx\)

\(\Big \downarrow \) 86

\(\displaystyle \int \left (\frac {(a+b x)^7 (-2 a B e+A b e+b B d)}{b^2}+\frac {(a+b x)^6 (A b-a B) (b d-a e)}{b^2}+\frac {B e (a+b x)^8}{b^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(a+b x)^8 (-2 a B e+A b e+b B d)}{8 b^3}+\frac {(a+b x)^7 (A b-a B) (b d-a e)}{7 b^3}+\frac {B e (a+b x)^9}{9 b^3}\)

input
Int[(a + b*x)^6*(A + B*x)*(d + e*x),x]
 
output
((A*b - a*B)*(b*d - a*e)*(a + b*x)^7)/(7*b^3) + ((b*B*d + A*b*e - 2*a*B*e) 
*(a + b*x)^8)/(8*b^3) + (B*e*(a + b*x)^9)/(9*b^3)
 

3.11.58.3.1 Defintions of rubi rules used

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.11.58.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(278\) vs. \(2(69)=138\).

Time = 0.71 (sec) , antiderivative size = 279, normalized size of antiderivative = 3.72

method result size
norman \(\frac {b^{6} B e \,x^{9}}{9}+\left (\frac {1}{8} A \,b^{6} e +\frac {3}{4} B a \,b^{5} e +\frac {1}{8} b^{6} B d \right ) x^{8}+\left (\frac {6}{7} A a \,b^{5} e +\frac {1}{7} A \,b^{6} d +\frac {15}{7} B \,a^{2} b^{4} e +\frac {6}{7} B a \,b^{5} d \right ) x^{7}+\left (\frac {5}{2} A \,a^{2} b^{4} e +A a \,b^{5} d +\frac {10}{3} B \,a^{3} b^{3} e +\frac {5}{2} B \,a^{2} b^{4} d \right ) x^{6}+\left (4 A \,a^{3} b^{3} e +3 A \,a^{2} b^{4} d +3 B \,a^{4} b^{2} e +4 B \,a^{3} b^{3} d \right ) x^{5}+\left (\frac {15}{4} A \,a^{4} b^{2} e +5 A \,a^{3} b^{3} d +\frac {3}{2} B \,a^{5} b e +\frac {15}{4} B \,a^{4} b^{2} d \right ) x^{4}+\left (2 A \,a^{5} b e +5 A \,a^{4} b^{2} d +\frac {1}{3} B \,a^{6} e +2 B \,a^{5} b d \right ) x^{3}+\left (\frac {1}{2} A \,a^{6} e +3 A \,a^{5} b d +\frac {1}{2} B \,a^{6} d \right ) x^{2}+A \,a^{6} d x\) \(279\)
default \(\frac {b^{6} B e \,x^{9}}{9}+\frac {\left (\left (b^{6} A +6 a \,b^{5} B \right ) e +b^{6} B d \right ) x^{8}}{8}+\frac {\left (\left (6 a \,b^{5} A +15 a^{2} b^{4} B \right ) e +\left (b^{6} A +6 a \,b^{5} B \right ) d \right ) x^{7}}{7}+\frac {\left (\left (15 a^{2} b^{4} A +20 a^{3} b^{3} B \right ) e +\left (6 a \,b^{5} A +15 a^{2} b^{4} B \right ) d \right ) x^{6}}{6}+\frac {\left (\left (20 a^{3} b^{3} A +15 a^{4} b^{2} B \right ) e +\left (15 a^{2} b^{4} A +20 a^{3} b^{3} B \right ) d \right ) x^{5}}{5}+\frac {\left (\left (15 a^{4} b^{2} A +6 a^{5} b B \right ) e +\left (20 a^{3} b^{3} A +15 a^{4} b^{2} B \right ) d \right ) x^{4}}{4}+\frac {\left (\left (6 A \,a^{5} b +B \,a^{6}\right ) e +\left (15 a^{4} b^{2} A +6 a^{5} b B \right ) d \right ) x^{3}}{3}+\frac {\left (A \,a^{6} e +\left (6 A \,a^{5} b +B \,a^{6}\right ) d \right ) x^{2}}{2}+A \,a^{6} d x\) \(293\)
gosper \(3 A \,a^{2} b^{4} d \,x^{5}+3 B \,a^{4} b^{2} e \,x^{5}+4 B \,a^{3} b^{3} d \,x^{5}+\frac {1}{2} x^{2} B \,a^{6} d +\frac {1}{2} x^{2} A \,a^{6} e +\frac {1}{3} x^{3} B \,a^{6} e +\frac {1}{7} x^{7} A \,b^{6} d +\frac {1}{8} x^{8} b^{6} B d +\frac {1}{8} x^{8} A \,b^{6} e +A \,a^{6} d x +\frac {1}{9} b^{6} B e \,x^{9}+\frac {5}{2} x^{6} B \,a^{2} b^{4} d +\frac {15}{4} x^{4} A \,a^{4} b^{2} e +5 x^{4} A \,a^{3} b^{3} d +\frac {5}{2} x^{6} A \,a^{2} b^{4} e +x^{6} A a \,b^{5} d +4 A \,a^{3} b^{3} e \,x^{5}+\frac {6}{7} x^{7} A a \,b^{5} e +\frac {10}{3} x^{6} B \,a^{3} b^{3} e +5 x^{3} A \,a^{4} b^{2} d +2 x^{3} B \,a^{5} b d +3 x^{2} A \,a^{5} b d +\frac {3}{4} x^{8} B a \,b^{5} e +\frac {3}{2} x^{4} B \,a^{5} b e +\frac {15}{4} x^{4} B \,a^{4} b^{2} d +2 x^{3} A \,a^{5} b e +\frac {15}{7} x^{7} B \,a^{2} b^{4} e +\frac {6}{7} x^{7} B a \,b^{5} d\) \(322\)
risch \(3 A \,a^{2} b^{4} d \,x^{5}+3 B \,a^{4} b^{2} e \,x^{5}+4 B \,a^{3} b^{3} d \,x^{5}+\frac {1}{2} x^{2} B \,a^{6} d +\frac {1}{2} x^{2} A \,a^{6} e +\frac {1}{3} x^{3} B \,a^{6} e +\frac {1}{7} x^{7} A \,b^{6} d +\frac {1}{8} x^{8} b^{6} B d +\frac {1}{8} x^{8} A \,b^{6} e +A \,a^{6} d x +\frac {1}{9} b^{6} B e \,x^{9}+\frac {5}{2} x^{6} B \,a^{2} b^{4} d +\frac {15}{4} x^{4} A \,a^{4} b^{2} e +5 x^{4} A \,a^{3} b^{3} d +\frac {5}{2} x^{6} A \,a^{2} b^{4} e +x^{6} A a \,b^{5} d +4 A \,a^{3} b^{3} e \,x^{5}+\frac {6}{7} x^{7} A a \,b^{5} e +\frac {10}{3} x^{6} B \,a^{3} b^{3} e +5 x^{3} A \,a^{4} b^{2} d +2 x^{3} B \,a^{5} b d +3 x^{2} A \,a^{5} b d +\frac {3}{4} x^{8} B a \,b^{5} e +\frac {3}{2} x^{4} B \,a^{5} b e +\frac {15}{4} x^{4} B \,a^{4} b^{2} d +2 x^{3} A \,a^{5} b e +\frac {15}{7} x^{7} B \,a^{2} b^{4} e +\frac {6}{7} x^{7} B a \,b^{5} d\) \(322\)
parallelrisch \(3 A \,a^{2} b^{4} d \,x^{5}+3 B \,a^{4} b^{2} e \,x^{5}+4 B \,a^{3} b^{3} d \,x^{5}+\frac {1}{2} x^{2} B \,a^{6} d +\frac {1}{2} x^{2} A \,a^{6} e +\frac {1}{3} x^{3} B \,a^{6} e +\frac {1}{7} x^{7} A \,b^{6} d +\frac {1}{8} x^{8} b^{6} B d +\frac {1}{8} x^{8} A \,b^{6} e +A \,a^{6} d x +\frac {1}{9} b^{6} B e \,x^{9}+\frac {5}{2} x^{6} B \,a^{2} b^{4} d +\frac {15}{4} x^{4} A \,a^{4} b^{2} e +5 x^{4} A \,a^{3} b^{3} d +\frac {5}{2} x^{6} A \,a^{2} b^{4} e +x^{6} A a \,b^{5} d +4 A \,a^{3} b^{3} e \,x^{5}+\frac {6}{7} x^{7} A a \,b^{5} e +\frac {10}{3} x^{6} B \,a^{3} b^{3} e +5 x^{3} A \,a^{4} b^{2} d +2 x^{3} B \,a^{5} b d +3 x^{2} A \,a^{5} b d +\frac {3}{4} x^{8} B a \,b^{5} e +\frac {3}{2} x^{4} B \,a^{5} b e +\frac {15}{4} x^{4} B \,a^{4} b^{2} d +2 x^{3} A \,a^{5} b e +\frac {15}{7} x^{7} B \,a^{2} b^{4} e +\frac {6}{7} x^{7} B a \,b^{5} d\) \(322\)

input
int((b*x+a)^6*(B*x+A)*(e*x+d),x,method=_RETURNVERBOSE)
 
output
1/9*b^6*B*e*x^9+(1/8*A*b^6*e+3/4*B*a*b^5*e+1/8*b^6*B*d)*x^8+(6/7*A*a*b^5*e 
+1/7*A*b^6*d+15/7*B*a^2*b^4*e+6/7*B*a*b^5*d)*x^7+(5/2*A*a^2*b^4*e+A*a*b^5* 
d+10/3*B*a^3*b^3*e+5/2*B*a^2*b^4*d)*x^6+(4*A*a^3*b^3*e+3*A*a^2*b^4*d+3*B*a 
^4*b^2*e+4*B*a^3*b^3*d)*x^5+(15/4*A*a^4*b^2*e+5*A*a^3*b^3*d+3/2*B*a^5*b*e+ 
15/4*B*a^4*b^2*d)*x^4+(2*A*a^5*b*e+5*A*a^4*b^2*d+1/3*B*a^6*e+2*B*a^5*b*d)* 
x^3+(1/2*A*a^6*e+3*A*a^5*b*d+1/2*B*a^6*d)*x^2+A*a^6*d*x
 
3.11.58.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 297 vs. \(2 (69) = 138\).

Time = 0.23 (sec) , antiderivative size = 297, normalized size of antiderivative = 3.96 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=\frac {1}{9} \, B b^{6} e x^{9} + A a^{6} d x + \frac {1}{8} \, {\left (B b^{6} d + {\left (6 \, B a b^{5} + A b^{6}\right )} e\right )} x^{8} + \frac {1}{7} \, {\left ({\left (6 \, B a b^{5} + A b^{6}\right )} d + 3 \, {\left (5 \, B a^{2} b^{4} + 2 \, A a b^{5}\right )} e\right )} x^{7} + \frac {1}{6} \, {\left (3 \, {\left (5 \, B a^{2} b^{4} + 2 \, A a b^{5}\right )} d + 5 \, {\left (4 \, B a^{3} b^{3} + 3 \, A a^{2} b^{4}\right )} e\right )} x^{6} + {\left ({\left (4 \, B a^{3} b^{3} + 3 \, A a^{2} b^{4}\right )} d + {\left (3 \, B a^{4} b^{2} + 4 \, A a^{3} b^{3}\right )} e\right )} x^{5} + \frac {1}{4} \, {\left (5 \, {\left (3 \, B a^{4} b^{2} + 4 \, A a^{3} b^{3}\right )} d + 3 \, {\left (2 \, B a^{5} b + 5 \, A a^{4} b^{2}\right )} e\right )} x^{4} + \frac {1}{3} \, {\left (3 \, {\left (2 \, B a^{5} b + 5 \, A a^{4} b^{2}\right )} d + {\left (B a^{6} + 6 \, A a^{5} b\right )} e\right )} x^{3} + \frac {1}{2} \, {\left (A a^{6} e + {\left (B a^{6} + 6 \, A a^{5} b\right )} d\right )} x^{2} \]

input
integrate((b*x+a)^6*(B*x+A)*(e*x+d),x, algorithm="fricas")
 
output
1/9*B*b^6*e*x^9 + A*a^6*d*x + 1/8*(B*b^6*d + (6*B*a*b^5 + A*b^6)*e)*x^8 + 
1/7*((6*B*a*b^5 + A*b^6)*d + 3*(5*B*a^2*b^4 + 2*A*a*b^5)*e)*x^7 + 1/6*(3*( 
5*B*a^2*b^4 + 2*A*a*b^5)*d + 5*(4*B*a^3*b^3 + 3*A*a^2*b^4)*e)*x^6 + ((4*B* 
a^3*b^3 + 3*A*a^2*b^4)*d + (3*B*a^4*b^2 + 4*A*a^3*b^3)*e)*x^5 + 1/4*(5*(3* 
B*a^4*b^2 + 4*A*a^3*b^3)*d + 3*(2*B*a^5*b + 5*A*a^4*b^2)*e)*x^4 + 1/3*(3*( 
2*B*a^5*b + 5*A*a^4*b^2)*d + (B*a^6 + 6*A*a^5*b)*e)*x^3 + 1/2*(A*a^6*e + ( 
B*a^6 + 6*A*a^5*b)*d)*x^2
 
3.11.58.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 333 vs. \(2 (71) = 142\).

Time = 0.04 (sec) , antiderivative size = 333, normalized size of antiderivative = 4.44 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=A a^{6} d x + \frac {B b^{6} e x^{9}}{9} + x^{8} \left (\frac {A b^{6} e}{8} + \frac {3 B a b^{5} e}{4} + \frac {B b^{6} d}{8}\right ) + x^{7} \cdot \left (\frac {6 A a b^{5} e}{7} + \frac {A b^{6} d}{7} + \frac {15 B a^{2} b^{4} e}{7} + \frac {6 B a b^{5} d}{7}\right ) + x^{6} \cdot \left (\frac {5 A a^{2} b^{4} e}{2} + A a b^{5} d + \frac {10 B a^{3} b^{3} e}{3} + \frac {5 B a^{2} b^{4} d}{2}\right ) + x^{5} \cdot \left (4 A a^{3} b^{3} e + 3 A a^{2} b^{4} d + 3 B a^{4} b^{2} e + 4 B a^{3} b^{3} d\right ) + x^{4} \cdot \left (\frac {15 A a^{4} b^{2} e}{4} + 5 A a^{3} b^{3} d + \frac {3 B a^{5} b e}{2} + \frac {15 B a^{4} b^{2} d}{4}\right ) + x^{3} \cdot \left (2 A a^{5} b e + 5 A a^{4} b^{2} d + \frac {B a^{6} e}{3} + 2 B a^{5} b d\right ) + x^{2} \left (\frac {A a^{6} e}{2} + 3 A a^{5} b d + \frac {B a^{6} d}{2}\right ) \]

input
integrate((b*x+a)**6*(B*x+A)*(e*x+d),x)
 
output
A*a**6*d*x + B*b**6*e*x**9/9 + x**8*(A*b**6*e/8 + 3*B*a*b**5*e/4 + B*b**6* 
d/8) + x**7*(6*A*a*b**5*e/7 + A*b**6*d/7 + 15*B*a**2*b**4*e/7 + 6*B*a*b**5 
*d/7) + x**6*(5*A*a**2*b**4*e/2 + A*a*b**5*d + 10*B*a**3*b**3*e/3 + 5*B*a* 
*2*b**4*d/2) + x**5*(4*A*a**3*b**3*e + 3*A*a**2*b**4*d + 3*B*a**4*b**2*e + 
 4*B*a**3*b**3*d) + x**4*(15*A*a**4*b**2*e/4 + 5*A*a**3*b**3*d + 3*B*a**5* 
b*e/2 + 15*B*a**4*b**2*d/4) + x**3*(2*A*a**5*b*e + 5*A*a**4*b**2*d + B*a** 
6*e/3 + 2*B*a**5*b*d) + x**2*(A*a**6*e/2 + 3*A*a**5*b*d + B*a**6*d/2)
 
3.11.58.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 297 vs. \(2 (69) = 138\).

Time = 0.20 (sec) , antiderivative size = 297, normalized size of antiderivative = 3.96 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=\frac {1}{9} \, B b^{6} e x^{9} + A a^{6} d x + \frac {1}{8} \, {\left (B b^{6} d + {\left (6 \, B a b^{5} + A b^{6}\right )} e\right )} x^{8} + \frac {1}{7} \, {\left ({\left (6 \, B a b^{5} + A b^{6}\right )} d + 3 \, {\left (5 \, B a^{2} b^{4} + 2 \, A a b^{5}\right )} e\right )} x^{7} + \frac {1}{6} \, {\left (3 \, {\left (5 \, B a^{2} b^{4} + 2 \, A a b^{5}\right )} d + 5 \, {\left (4 \, B a^{3} b^{3} + 3 \, A a^{2} b^{4}\right )} e\right )} x^{6} + {\left ({\left (4 \, B a^{3} b^{3} + 3 \, A a^{2} b^{4}\right )} d + {\left (3 \, B a^{4} b^{2} + 4 \, A a^{3} b^{3}\right )} e\right )} x^{5} + \frac {1}{4} \, {\left (5 \, {\left (3 \, B a^{4} b^{2} + 4 \, A a^{3} b^{3}\right )} d + 3 \, {\left (2 \, B a^{5} b + 5 \, A a^{4} b^{2}\right )} e\right )} x^{4} + \frac {1}{3} \, {\left (3 \, {\left (2 \, B a^{5} b + 5 \, A a^{4} b^{2}\right )} d + {\left (B a^{6} + 6 \, A a^{5} b\right )} e\right )} x^{3} + \frac {1}{2} \, {\left (A a^{6} e + {\left (B a^{6} + 6 \, A a^{5} b\right )} d\right )} x^{2} \]

input
integrate((b*x+a)^6*(B*x+A)*(e*x+d),x, algorithm="maxima")
 
output
1/9*B*b^6*e*x^9 + A*a^6*d*x + 1/8*(B*b^6*d + (6*B*a*b^5 + A*b^6)*e)*x^8 + 
1/7*((6*B*a*b^5 + A*b^6)*d + 3*(5*B*a^2*b^4 + 2*A*a*b^5)*e)*x^7 + 1/6*(3*( 
5*B*a^2*b^4 + 2*A*a*b^5)*d + 5*(4*B*a^3*b^3 + 3*A*a^2*b^4)*e)*x^6 + ((4*B* 
a^3*b^3 + 3*A*a^2*b^4)*d + (3*B*a^4*b^2 + 4*A*a^3*b^3)*e)*x^5 + 1/4*(5*(3* 
B*a^4*b^2 + 4*A*a^3*b^3)*d + 3*(2*B*a^5*b + 5*A*a^4*b^2)*e)*x^4 + 1/3*(3*( 
2*B*a^5*b + 5*A*a^4*b^2)*d + (B*a^6 + 6*A*a^5*b)*e)*x^3 + 1/2*(A*a^6*e + ( 
B*a^6 + 6*A*a^5*b)*d)*x^2
 
3.11.58.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (69) = 138\).

Time = 0.28 (sec) , antiderivative size = 321, normalized size of antiderivative = 4.28 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=\frac {1}{9} \, B b^{6} e x^{9} + \frac {1}{8} \, B b^{6} d x^{8} + \frac {3}{4} \, B a b^{5} e x^{8} + \frac {1}{8} \, A b^{6} e x^{8} + \frac {6}{7} \, B a b^{5} d x^{7} + \frac {1}{7} \, A b^{6} d x^{7} + \frac {15}{7} \, B a^{2} b^{4} e x^{7} + \frac {6}{7} \, A a b^{5} e x^{7} + \frac {5}{2} \, B a^{2} b^{4} d x^{6} + A a b^{5} d x^{6} + \frac {10}{3} \, B a^{3} b^{3} e x^{6} + \frac {5}{2} \, A a^{2} b^{4} e x^{6} + 4 \, B a^{3} b^{3} d x^{5} + 3 \, A a^{2} b^{4} d x^{5} + 3 \, B a^{4} b^{2} e x^{5} + 4 \, A a^{3} b^{3} e x^{5} + \frac {15}{4} \, B a^{4} b^{2} d x^{4} + 5 \, A a^{3} b^{3} d x^{4} + \frac {3}{2} \, B a^{5} b e x^{4} + \frac {15}{4} \, A a^{4} b^{2} e x^{4} + 2 \, B a^{5} b d x^{3} + 5 \, A a^{4} b^{2} d x^{3} + \frac {1}{3} \, B a^{6} e x^{3} + 2 \, A a^{5} b e x^{3} + \frac {1}{2} \, B a^{6} d x^{2} + 3 \, A a^{5} b d x^{2} + \frac {1}{2} \, A a^{6} e x^{2} + A a^{6} d x \]

input
integrate((b*x+a)^6*(B*x+A)*(e*x+d),x, algorithm="giac")
 
output
1/9*B*b^6*e*x^9 + 1/8*B*b^6*d*x^8 + 3/4*B*a*b^5*e*x^8 + 1/8*A*b^6*e*x^8 + 
6/7*B*a*b^5*d*x^7 + 1/7*A*b^6*d*x^7 + 15/7*B*a^2*b^4*e*x^7 + 6/7*A*a*b^5*e 
*x^7 + 5/2*B*a^2*b^4*d*x^6 + A*a*b^5*d*x^6 + 10/3*B*a^3*b^3*e*x^6 + 5/2*A* 
a^2*b^4*e*x^6 + 4*B*a^3*b^3*d*x^5 + 3*A*a^2*b^4*d*x^5 + 3*B*a^4*b^2*e*x^5 
+ 4*A*a^3*b^3*e*x^5 + 15/4*B*a^4*b^2*d*x^4 + 5*A*a^3*b^3*d*x^4 + 3/2*B*a^5 
*b*e*x^4 + 15/4*A*a^4*b^2*e*x^4 + 2*B*a^5*b*d*x^3 + 5*A*a^4*b^2*d*x^3 + 1/ 
3*B*a^6*e*x^3 + 2*A*a^5*b*e*x^3 + 1/2*B*a^6*d*x^2 + 3*A*a^5*b*d*x^2 + 1/2* 
A*a^6*e*x^2 + A*a^6*d*x
 
3.11.58.9 Mupad [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 257, normalized size of antiderivative = 3.43 \[ \int (a+b x)^6 (A+B x) (d+e x) \, dx=x^3\,\left (\frac {B\,a^6\,e}{3}+2\,A\,a^5\,b\,e+2\,B\,a^5\,b\,d+5\,A\,a^4\,b^2\,d\right )+x^7\,\left (\frac {A\,b^6\,d}{7}+\frac {6\,A\,a\,b^5\,e}{7}+\frac {6\,B\,a\,b^5\,d}{7}+\frac {15\,B\,a^2\,b^4\,e}{7}\right )+x^2\,\left (\frac {A\,a^6\,e}{2}+\frac {B\,a^6\,d}{2}+3\,A\,a^5\,b\,d\right )+x^8\,\left (\frac {A\,b^6\,e}{8}+\frac {B\,b^6\,d}{8}+\frac {3\,B\,a\,b^5\,e}{4}\right )+a^2\,b^2\,x^5\,\left (3\,A\,b^2\,d+3\,B\,a^2\,e+4\,A\,a\,b\,e+4\,B\,a\,b\,d\right )+A\,a^6\,d\,x+\frac {B\,b^6\,e\,x^9}{9}+\frac {a^3\,b\,x^4\,\left (20\,A\,b^2\,d+6\,B\,a^2\,e+15\,A\,a\,b\,e+15\,B\,a\,b\,d\right )}{4}+\frac {a\,b^3\,x^6\,\left (6\,A\,b^2\,d+20\,B\,a^2\,e+15\,A\,a\,b\,e+15\,B\,a\,b\,d\right )}{6} \]

input
int((A + B*x)*(a + b*x)^6*(d + e*x),x)
 
output
x^3*((B*a^6*e)/3 + 2*A*a^5*b*e + 2*B*a^5*b*d + 5*A*a^4*b^2*d) + x^7*((A*b^ 
6*d)/7 + (6*A*a*b^5*e)/7 + (6*B*a*b^5*d)/7 + (15*B*a^2*b^4*e)/7) + x^2*((A 
*a^6*e)/2 + (B*a^6*d)/2 + 3*A*a^5*b*d) + x^8*((A*b^6*e)/8 + (B*b^6*d)/8 + 
(3*B*a*b^5*e)/4) + a^2*b^2*x^5*(3*A*b^2*d + 3*B*a^2*e + 4*A*a*b*e + 4*B*a* 
b*d) + A*a^6*d*x + (B*b^6*e*x^9)/9 + (a^3*b*x^4*(20*A*b^2*d + 6*B*a^2*e + 
15*A*a*b*e + 15*B*a*b*d))/4 + (a*b^3*x^6*(6*A*b^2*d + 20*B*a^2*e + 15*A*a* 
b*e + 15*B*a*b*d))/6